
Using CAEN digitizers
under Linux (rev. 4)

Cester Davide, 2012

1. Installing Ubuntu

Download and install Ubuntu. This guide has been tested with versions 11.04 and 11.10.

2. Installing CAEN drivers and libraries

Download from CAEN website:

• CAENDigitizer library

• CAENComm library (should be inside CAENDigitizer package as requirement)

• CAENVMELib library (should be inside CAENDigitizer package as requirement)

• the driver for the interface (PCIe, USB...)

The libraries have their own script to launch as root (sudo ./install_x64); the driver
must be compiled and loaded in the kernel at startup:

1. Compile the kernel module (./configure; make)

2. Copy the .ko file (e.g. a3818.ko) somewhere (like /lib/modules/ or subdirs)

3. Copy the loader script (e.g. a3818_load) in /etc/init.d; edit it so that the variable
script_path points to the directory you choose at step 2

4. move inside /etc/init.d and launch:
sudo updaterc.d a3818_load defaults

this will tell the system to load the module at startup

Warning: Ubuntu might automatically try to update the kernel; this will prevent the module to
load properly. You have three possibilities:

• never upload kernel

• upload kernel, but select the old one in the boot menu at startup

• repeat steps 1..4 every time you update the kernel

A smart solution would be to copy the entire source code folder inside /lib/modules/caen
and then using that path in the loader script: in this way, only step 1 will be required after

kernel updates (you will probably need to have root privileges to compile in that folder).

3. Installing CAEN Software

3.1. CAENUpgrader

The program is provided in the Linux version. Simply extract the archives, configure the
source, make and sudo make install. Then, as root, copy the CAENUpgraderGUI
executable in /usr/bin so it will be available from every directory and for every user.

3.2. CAEN .NET Demo

This program is MS Windows-dependant; we must use Wine. Install Wine from the
repositories, then download from CAEN website:

• the Windows version of the driver you are using

• CAENVMELib library

• CAEN VME Demo installer

in addiction, you must use winetricks to install .NET platform inside Wine:

$ wget http://winetricks.org/winetricks

$ chmod u+x winetricks

$ winetricks dotnet30

now you can install the Windows executables inside Wine:

1. right click, Properties / Permissions / Allow executing file as program

2. right click, Open with Wine Windows Program Loader

You will end up having a Wine folder under Applications menu (top-left corner of the screen):
the .NET Demo executable is in:

Applications / Wine / Programs / CAEN / VME / Demos / CAENVMEDemoDotNet

4. Installing Qt libraries

Install the package libqt4dev (or qt4designer if you want more tools to play with).

5. Installing ROOT

Download ROOT from root.cern.ch website; choose version 5.32 that fixed some minor
bugs in Qt-ROOT integration.

You will also need the following packages:

make, gcc, gccc++ or g++, binutils, dpkgdev, libX11dev,
libXpmdev, libXftdev, libXextdev

http://winetricks.org/winetricks

(list taken from http://root.cern.ch/drupal/content/build-prerequisites).

Now you can extract the ROOT archive and launch ./configure; add enableqt if you
are going to embed ROOT in a GUI made with Qt. Then launch make to compile.

Before you actually can install ROOT you have to set up system variables; open hidden file
.bashrc in your user home directory and add the following lines at the end:

User specific environment and startup programs

export ROOTSYS=/usr/local/root

export LD_LIBRARY_PATH=/usr/lib:$ROOTSYS/lib:$LD_LIBRARY_PATH

export PATH=$PATH:.:$HOME/bin:$ROOTSYS/bin

export CPLUS_INCLUDE_PATH=include:/usr/local/root/include

then go as root user, set ROOT environment variable, install and switch back to your user:

$ sudo su

$ export ROOTSYS=/usr/local/root

$ make install

$ exit

Now close and reopen all your terminals.

6. Compiling programs

Compiling a program with Qt and ROOT can be quite tricky if you are not familiar with
makefiles and all the libraries. Here there are some notes that can be of help; of course they
are not intended to replace official documentation (check Google, http://root.cern.ch
and http://developer.qt.nokia.com/).

6.1. A remainder on compiling commands

Standard c++ compiling under Linux works in this way:

c++ other1.cpp other2.cpp main.cpp o execname lnameoflib1 ...

• c++ is the name of the compiler

• .cpp files are source code files; you must list all files called by main.cpp or by
another .cpp listed file

• -o execname tells the compiler how to call the output program file

• lnameoflib1 is a library that must be linked to the executable (Qt or ROOT
libraries, in our case). Please notice the syntax: if we want to link the libraries
contained in files libRoot1.so and libQt2.so we must write

lRoot1 lQt2

ROOT provides an utility (rootconfig) for automatic listing of all available ROOT libraries:

http://root.cern.ch/drupal/content/build-prerequisites

$ rootconfig glibs

L/usr/local/root/lib lGui lCore lCint lRIO lNet lHist lGraf
lGraf3d lGpad lTree lRint lPostscript lMatrix lPhysics
lMathCore lThread pthread lm ldl rdynamic

so, in the compiling command line, using

c++ otherfile.cpp main.cpp o executablename `rootconfig glibs`

is equivalent to

c++ otherfile.cpp main.cpp o executablename L/usr/local/root/lib
lGui lCore lCint lRIO lNet lHist lGraf lGraf3d lGpad lTree
lRint lPostscript lMatrix lPhysics lMathCore lThread pthread
lm ldl rdynamic

There also can be some “compiler definition”, starting with D; for example, adding -DLINUX
in the compiling command will cause #ifdef LINUX inside the .cpp code to be evaluated
as TRUE.

6.2. Qt and the MOC files

The use of Qt libraries complicates the situation: it is not only a matter of long listing of files
and libraries, but some files need to be somehow “precompiled” in order to correctly handle all
interaction functionalities between Qt objects. A Meta-Object Compiler (moc) is needed to
produce one more file for each source file that uses Qt objects; these additional files must be
included in the final compiling list of sources, and the procedure gets very annoying to be
carried on manually. Of course, one could write his own shell script with all the required
operations; a standard technique for writing such a script is using makefiles.

6.3. Makefiles

Makefiles are a complex way to manage complex compiling. A typical makefile contains a list
of the libraries, of the compiling parameters, of the source files and their mutual
dependencies, and something else; the make program will take care of putting them together,
no matter how many they are. Here we will see how to create a working makefile for our
Qt/ROOT project.

1. Organize the source code as you wish; e.g. with separate folders for headers and code

2. launch the command qmake project: this will produce the file foldername.pro
containing the listing of all the source files that qmake can find in the current directory
and in subdirs. Note that unused or old .cpp files will be included in the list if only they
are found in some folder

3. launch the command qmake foldername.pro: this will generate a valid Makefile

4. now it's time to manually edit the Makefile, because qmake does not know that we
need other libraries, such as CAEN or ROOT ones. Change the lines:

DEFINES = DQT_NO_DEBUG DQT_GUI_LIB DQT_CORE_LIB DQT_SHARED
...
LIBS = $(SUBLIBS) L/usr/lib lQtGui lQtCore lpthread

with the following:

DEFINES = DQT_NO_DEBUG DQT_GUI_LIB DQT_CORE_LIB DQT_SHARED
DQT DLINUX
...
LIBS = $(SUBLIBS) L/usr/lib L/usr/lib64 lQtGui lQtCore
`rootconfig glibs` lGQt lpthread lCAENDigitizer

now everything should compile well with simply make.

Note: DQT and DLINUX are only an example. Check your existing source code, starting
from header files, to find out what defines you actualy need.

If your project gets bigger and you create more source files, you have to add them in the
Makefile; the easiest way is to repeat steps 1..4. Notice that you have to manually correct the
Makefile for additional defines and libraries each time you generate a new one.

By default, qmake-generated Makefiles place all the moc_ files and the .o files in the main
folder of your project. You can manually alter many of the Makefiles lines specify different
folder for these two families of files, but you will lose all the changes if you recreate the
Makefile; it is recommended to spend this time only when your project is stable enough, and
then always keep a backup of your custom Makefile.

6.4. make command tips & tricks

• make f Makefile: specify a custom Makefile

• make clean: delete all objects and compiled files from a precedent compiling (useful
after changes or aborted compiling)

• make j2: use two processor cores for compiling (faster)

	1. Installing Ubuntu
	2. Installing CAEN drivers and libraries
	3. Installing CAEN Software
	3.1. CAENUpgrader
	3.2. CAEN .NET Demo
	4. Installing Qt libraries
	5. Installing ROOT
	6. Compiling programs
	6.1. A remainder on compiling commands
	6.2. Qt and the MOC files
	6.3. Makefiles
	6.4. make command tips & tricks

